
FINAL REPORT

to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

on

RESIDENT DATABASE INTERFACES TO THE DAVID SYSTEM,
A HETEROGENEOUS DISTRIBUTED DATABASE MANAGEMENT SYSTEM

Marsha Moroh
Department of Computer Science
The City University of New York

130 Stuyvesant Place
Staten Island, New York 10301

The College of S t a t e n I s l and

NASA Grant NAG 5-763

December 15, 1988

(L I S A - C E - 1846 15) BESIDEllir DILTIlEASE N89-14946
I O T E R P I C E S TO ZEE L A V I C SPSTEEL, A
EETEBOGPLEOUS D I S I R I B C T E D tlllf ASE
EANAGEI¶E?iT SYSTEM Einal Report (C i t y U n i v - Uoclas
cf New Ycrk) 12 F CSCL 05B G3/82 0183374

!

I .

..

1 .

Table of Contents

1 INTRODUCTION .. 1

2 Resident Database Interfaces What is an Interface? 2
3 Work Performed .. 7

3.1 Interface Specifications 7
3.2 General Interface Software 7
3.3 Interfaces .. 8

3.3.1 ORACLE .. 8
3.3.2 INGRES 8
3.3.3 FITS and General Files 8
3.3.4 Other Relational DBMSs 8
3.3.5 Other Interfaces 9

4 Summary and Suggestions for Further Research 9
4.1 Build more interfaces 9
‘4.2 Generalize the interface-building process 9
4.3 Generalize the interface-building process 10

1 INTRODUCTION
The focus of this research project has been the development of a
methodology for building interfaces of resident database
management systems to a heterogeneous distributed database
management system under development at NASA, the DAVID system. A
secondary goal of the research was a demonstration of the
feasibility of that methodology by construction of the software
necessary to perform the interface task.
The first section of this document contains the interface
llterminologyll developed in the course of this research. The
second section describes the work performed; the third section
summarizes the results, puts the work into the context of the
DAVID system as a whole, and contains suggestions for further
research.
We feel that this research project has been very successful in
meeting its goals in two ways. First of all, we now know HOW to
build interfaces to heterogeneous distributed database manage-
ment systems: we have isolated the component parts that make up
an interface, and we know how those parts fit together, and how
they interact with the host system. Secondly, the immediate
practical application of our research was the construction of
several of the interfaces (some by us, some by others according
to the guidelines developed in this research), and the
construction of the software which I1hooksl1 those interfaces into
the DAVID system. The DAVID system, with its associated
interfaces, has been demonstrated on several occasions at the
Goddard Space Flight Center. These demos have generated
considerable enthusiasm on the part of the scientists for whom
communication is facilitated by the enhanced database capabili-
ties these interfaces can provide.

-1-

2 Resident Database Interfaces

what is an Interface?
An interface between database management systems is a layer of
software which allows queries and transactions made through one
DBMS to be processed on another, without replication of data and
without conversion of either database. Without such an interface,
if scientists who have data on 2 different DBMSs want to share
information, one of them would have to convert his/her data to
conform to the standards of the other's database management
system.
The database management systems that are to be interfaced will be
referred to as resident DBMSs. By resident DBMS, we mean any
database management system currently in use as a commercial
product or a research tool. When interfaced, these resident
DBMS's are connected via a single DBMS which is a heterogeneous
distributed system. All queries and transaction requests pass
through this central system, and so by installing an interface
between any resident DBMS and the heterogeneous distributed DBMS,
we provide that resident with the capability of communicating
with any other resident so interfaced.
heterogeneous distributed database management system for which
all these interfaces will be built, the host DBMS. It is not
necessary for the host and the resident to be on the same
physical machine.

We will call the

what are the components of an Interface?
For every DBMS to be interfaced, a package must be installed on
the host DBMS. The package contains the following components:
Generation of a Database Definition
There are two routines for generating database definitions
(sometimes called schemas) in an interface package. The first
takes a resident database definition and produces the
corresponding host database definition. The second produces the
resident database definition, given the host definition. The
former is used to install an existing resident database onto the
host system. (See Installinq a Resident Database, below.) The
latter routine enables a user to create a definition- for a new
resident database through the host DBMS without knowing the
syntax of the resident. (See Defininq a Resident Database,
below.)
Defining
A user can DEFINE a new resident database through the host DBMS.
This is accomplished in two operations. The first, creating the
actual database in the resident DBMS, requires the generation of
a set of commands which log on to the resident DBMS, and present
it with a definition (or schema) for the new database to be

Resident Database throush the Host DBMS

-2-

created. The creation of that schema, in turn, requires the
host-to-resident definition generator described above.
second operation in the DEFINE process is the installation of the
database definition of the resident in the database directory of
the host.
Installinq a Resident Database
Before host commands can be issued to process a resident
database, the resident must be INSTALLed on the host system. The
INSTALL operation is used to connect existing resident databases
to the host, thereby establishing interfacing capability. In the
Installation routine, there is no reading of data; the data
remains in the resident DBMS and only the database definition is
put in the directory of the host DBMS. To extract the definition
from the resident, commands must be issued to enter the DBMS and
generate a listing of the schema of that resident. Then, using
the resident-to-host definition generator, (described above), a
host version of the resident definition is derived. This form of
the database definition can then be put into the directory.
Deletinq a Resident Database throush the Host DBMS
A resident database may be DELETEd by a command through the host
DBMS. Deletion is a two-step process. First, the actual database
is deleted from the resident DBMS. Then, the corresponding
directory entry for that resident database is deleted from the
host DBMS. To delete the resident database, commands must be
generated which log on to the resident DBMS, provide the
authorization to delete, and perform the deletion.
llDeinstallinalg a Resident Database from the host DBMS
When a DEINSTALL command for a particular resident database is
issued, all record of that database is dropped from the host's
directory; the resident database itself is left intact. The
purpose of the DEINSTALL is to break the connection between the
resident and the host. Hence, it is the opposite of the INSTALL
operation. The DEINSTALL operation does not appear in succeeding
chapters, because the entire operation is performed by the host:
no resident participation is necessary.

The

Once the necessary information about the resident has been
installed in the directory of the host DBMS, queries and
transactions meant for the resident can be submitted through the
host. This is done in the next group of routines. The
interaction between the resident and the host can take place on 3
possible levels: the query language level, the table level, and
the path level.

The Query Lanauaqe Level

-3-

Some resident DBMSs support their own query languages. For those
DBMSs, a query or transaction involving a resident submitted
through the host DBMS can be translated by the resident interface
into a query or transaction in the language of the resident, and
then executed by the resident in its own environment. The
following primitive queries have been isolated as the components
of any complex query between a resident database and a host
database :
Generalized Selection-Projection. A selection-projection or
selection-multiprojection is performed on a resident database.
The results of the query are stored in a new database on the
host.
Semijoin.
host database. The result is a new database on the host, and a
table of pointers to rows of data items in both the source host
database and the new result database.
Store-to-Database. A selection-projection is performed on a
database on the host DBMS; the result is stored in a new database
in the resident DBMS.
Insert, Delete. Update. Transactions submitted through the host
are performed on a resident database. Insert adds row(s) of
data items, delete removes a row or more, update modifies a row
or rows.

A join is performed between a resident database and a

The Path Level
If the resident DBMS has a high-level language interface (such as
C, PASCAL or FORTRAN), and supports a command to retrieve
information from several tables of the database as a single
access (as is often the case in a hierarchical database), then
requests for information and transactions submitted via the host
can be handled by the host at the Path Level.
determines the proper access path through the resident database;
then calls on the path access routines of the resident DBMS to
navigate through the resident database.
Path First Row. The'first path IIrowtl of the resident database
(i.e., the first row of every table that makes up the specified
path through the database) is read by the resident DBMS, and the
data inserted into the host DBMS data buffers. There is one host
DBMS data buffer for each corresponding table row of the
resident.
on the data in the buffers.
-- Path Next Row, Path Previous Row, Path Last Row. The required
path llrowll of the database is read into the corresponding host
DBMS buffers, where any boolean evaluation is done.

The host DBMS

These routines are:

Any boolean evaluation is performed by the host DBMS

-4-

Path Insert, UDdate, Delete. A path ttrowtt of the database,
including all of the tables specified in the path, is inserted,
updated or deleted.
Path Assian. This routine performs tlhousekeeping" functions
necessary to allow the resident DBMS to communicate with the host
at the path level: it determines which tables of the database
must be used to make up the path, and allocates necessary data
buffers required by the resident to contain path information.
Path Deassian. This routine performs any tthousekeepingll
functions necessary to terminate a resident interface path access
by disassociating the resident with that path if necessary, and
deallocating any special data areas set aside by Path Assign.

The Table-Row Level
In some cases, it is necessary to access the resident DBMS at the
lowest level, i.e.! the Table-Row Level.
access capability is used for those resident DBMSs which support
a high-level language interface, such as FORTRAN or C, but
provide neither a query language nor access at the path level.
This is common in network DBMSs. In these cases, the only way
for the host DBMS to process the resident data is at the single
table level. When resident DBMSs support user access at the
table-row level, requests for information and transactions
submitted via the host are processed by the host until the
request is reduced to a call for a single row of a single table.
At that level, the request can be handled by the resident DBMS.
If the table-row request includes a boolean, the boolean
evaluation is done by the host on the data after it has reached
the host buffer. The table-row routines are:
Table-Row First. Table-Row Last. The first (last) row of a table
of the resident database is read into a buffer of the host DBMS.
Any boolean evaluation is done in the host buffer.
Table-Row Next, Table-Row Previous. The next (previous) row of a
table of the resident database is read into a buffer of the host.
Any boolean evaluation is done in the host buffer.
Table-Row Insert, Table-Row Delete, Table-Row UDdate. A row of
data of a table in the resident database is inserted, deleted or
updated.
Table-Row Connect. A row of data which has just been inserted
into a table in the resident database, is connected to the proper
parent. This routine only has applicability in a database of
network structure.
Table-Row Disconnect. A row of data is disconnected from the
designated parent, and if that is the last parent, the row is
deleted from the database. This routine only has applicability
in a database of network structure.

This table-at-a-time

-5-

Table-Row Parent. Given a row of a table, and the name of a
parent table of that table, this routine returns a row of data
from the parent table.
database of network structure.

This routine only has applicability in a

Assigning and Deassigning Resident Databases.
table-row routines or path routines can access a resident
database, certain initialization functions must be performed.
Similarly, after path or table-row access routines to a resident
have been performed, some termination operations functions must
take place before the resident DBMS is exited. These routines are
as follows:
Assian Database. This routine performs "housekeepingn functions
necessary to allow the resident to communicate with the host: it
establishes the necessary data buffers and variables needed by
the resident, logs on to the resident, provides the necessary
security, performs any necessary language translation or
execution of query language statements.
Deassian Database. This routine performs llhousekeepinglf func-
tions necessary to terminate host interaction with a resident:
closes the resident database, logs off of the resident DBMS, and
deallocates any special data areas set aside by Assign Database.

Before either

-6-

3 Work Performed
The following is an overview of the work performed under this
grant, and the progress made towards solving the interface
problems .

3.1 Interface Bpecifications
A set of detailed specifications for 11 database management
systems commercially available, and for general file systems
(see 3 . 3 . 3 , below) were developed, according to the design
outlined in section 2, above. There were two levels to these
specifications: for each major module, the high-level spec
explains what it does and how it connects to the rest of the
system, while the low-level spec provides details at the
algorithm level.
example. The complete set of specifications is available at
NASA's Goddard Space Flight Center (contact Dr. Barry Jacobs,
code 6 3 4) , or from the author.
These specifications were intended for use by people building
interfaces to the DAVID system: in particular, the author and
a set of university llinterface-buildingll teams funded by the
DAVID project. The author supplied each team with a set of
specifications for the particular interface the team was
working on, and provided technical support for the teams while
the interface building was going on. This was particularly
important in the initial stages of the construction of the
DAVID system, when the system design was changing almost
daily. An important part of the author's task was to insulate
the team from all of the changes by providing them with a
constant environment, and by building connecting software
which handled the changes in DAVID'S design.

Each low-level spec is accompanied by an

3.2 General Interface Boftware
One of the modules of the DAVID system is the software which
enables queries and transactions submitted to DAVID to be
channeled to the proper resident DBMS interface, and the
results transferred back. This #linterface to the interfaces"
was developed by the author in the course of the research.
consists of a set of routines which accept the query or
transaction, parse it, put it into a data structure designed
by the author, and, after determining which resident
interface should be the recipient, sends it to the proper
place. When the transaction is complete, the software
transmits the results back to the DAVID system.
The data structure used in the development of the interfaces
was created by the author for the university inter-
face-building teams to insulate them from the changes
constantly occurring in the software design of DAVID at the
time, and to spare them from the agony of having to deal with

It

-7-

a parser and parse tree which were extremely general, obscure,
and changing daily.
which filled it in were intended to be a temporary measure to
be used only until DAVID stabilized; however, it proved to be
so useful that it is still in place today.

This data structure and the routines

3.3 Interfaces
Once the complete specifications were in place (see 3.1,
above) and the general interface software (see 3.2) was
written, several interfaces to commercial DBMSs currently
being used at NASA, were written and installed into the DAVID
system. These interfaces are described briefly below:

3.3.1 ORACLE.

The ORACLE interface was designed and developed at
University of Houston according to our specifications, and
installed at NASA on a VAX machine.

3.3.2 INGRES.
The INGRES interface was developed at Louisiana State
University according to our specifications, and installed at
NASA on the AT&T 3B2. A subsequent version for the VAX was
developed at NASA.

3.3.3 FITS and General Files.
Interfaces to both the FITS (Flexible Image Transfer System)
file system and to general files with no headers were
designed, developed and installed by the author. These are
not, strictly speaking, database management systems, but
instead are file systems whose data are read via
user-constructed programs. Nevertheless, it was felt by the
author that such interfaces would prove extremely useful to
the scientific community, since they would provide these
files with database management system facilities. These
facilities include query processing capability and, via the
DAVID "reading room" facility, the ability to perform random
accesses and transactions on the data.

3.3.4 Other Relational DBMSs.
Interfaces to several other relational DBMSs were built at
NASA recently, according to our guidelines. It is a telling
observation that, although the first (ORACLE) interface took
almost two years to develop (beginning in 1985) while our
guidelines were being developed, the IMDM interface (one of
the relational DBMSs used at NASA) took just a few weeks to
implement, in the fall of 1988.

-8-

3.3.5 Other Interfaces.
A few other interfaces were begun at the early stages of
this research. Two of them, RBASE and KNOWLEDGEMAN,
microcomputer relational DBMSs, were developed by the author
as the guidelines were being developed. These two were
never interfaced to DAVID because of the fact that the DAVID
system does not yet run on a DOS machine (and maybe never
will!). Two more, IDMS (under development at Brooklyn
College) and RAMIS (being developed at University of
Toledo) were never finished. The author is continuing to
work with a student from Brooklyn College on the IDMS
interface. Although this interface can not be completed at
this time (since the intersection of the hardware supporting
DAVID and the hardware supporting IDMS is null), it is
particularly interesting to us because it is a network-st-
ructured DBMS, which allows us to test theories about
interfacing these kinds of DBMSs to a host. Similarly, the
RAMIS interface is a good example of a hierarchical DBMS,
and hence there is a lot to be learned about interface
techniques from its implementation. The author has applied
for a local (CUNY) university grant to continue the
hierarchical investigations on FOCUS, a DBMS available on a
variety of computers.

4 Bummary and Buggestions for Further Research
Now that the properties of an interface have been isolated,
detailed specifications for interfaces spelled out, and the
software to connect the interfaces to DAVID installed, we feel
that a respectable start has been made on the task of interfacing
different resident databases to a heterogeneous distributed host.
But much remains to be done. Some of these activities are
summarized below:

4.1 Build more interfaces
Now that the interface-building process is clearly understood,
the task of building an interface is not so formidable as it
was in the past. There are a number of DBMS systems currently
being used by NASA scientists which could now be interfaced to
the DAVID system. This will enable those users to be able to
exchange information without having to do data conversion
(something which they are not now able to do).

4.2 Generalize the interface-building process
We have been investigating the possibility of reducing the
task of building interfaces to that of building a set of
static, data-independent templates which get filled in at
query- (or transaction)- processing time by a set of software
routines common to all interfaces. If this approach works,

-9-

then the construction of an interface will require no
programming at all -- just the creation of a set of templates
(one for each interface component).

4.3 Generalize the interface-building process
The task of constructing the templates described above, may be
able to be performed by an expert system, which would
interactively solicit requirements and characteristics of the
candidate DBMS; then construct the set of templates by
altering a "master templatell to make it DBMS-specific. In
that case, the interface builder doesn't need to know anything
about the DAVID system at all, and needs to know only about
his/her own resident DBMS being interfaced.

-10-

